Triple systems and associated differences

Ъу

J.C. Bermond*, A.E. Brouwer** & A. Germa*

ABSTRACT

We formulate a problem that is a common generalization of the problems of Skolem and Langford. Necessary conditions on the parameters are derived and many (but not all) cases are solved.

^{*} C.M.S., 54 Bd. Raspail 75006 Paris

^{**} Mathematical Centre, 2e Boerhaavestraat 49, Amsterdam.

O. INTRODUCTION

In this paper we study the following problem which is a special case a problem in radioastronomy: how to arrange antennas in a linear array such that certain prescribed mutual distances occur? (see [1] for more details):

<u>PROBLEM I.</u> Let d and m be positive integers. For what values of d and m is it possible to find m triples $A_i = \{a_i, b_i, c_i\}$ (i = 1,2,...,m), such that the 3m numbers (called associated differences of the triples) $b_i - a_i$, $c_i - a_i$, $c_i - b_i$ (i = 1,2,...,m) are all the integers of the set $\{d,d+1,...,d+3m-1\}$?

For example $A_1 = \{0,4,6\}$, $A_2 = \{0,9,10\}$, $A_3 = \{0,8,11\}$, $A_4 = \{0,7,12\}$ is a solution for m = 4, d = 1.

<u>REMARK</u>. As we are interested only in the differences associated with the triples, we may suppose that $a_i = 0$ in all triples.

Related to this problem is:

<u>PROBLEM II.</u> Let d and m be positive integers. For what values of d and m is it possible to find a partition of the set $\{1,2,\ldots,2m\}$ into m pairs $\{p_i,q_i\}$ such that the m numbers q_i-p_i ($i=1,\ldots,m$) are all the integers of the set $\{d,d+1,\ldots,d+m-1\}$?

Obviously a solution to the second problem implies a solution to the first one: take as triples $A_i = (0, p_i + m + d - 1, q_i + m + d - 1)$. All our solutions to problem I will also be solutions to problem II. (But the solution given in the above example is not derived from a solution

PROPOSITION 1. Necessary conditions for the existence of a solution to problem I are:

(i) $m \ge 2d-1$ or m = 0

to problem II.)

(ii) If d is odd $m \equiv 0$ or 1 (mod4) If d is even $m \equiv 0$ or 3 (mod4).

<u>PROOF.</u> This is a special case of theorem 2.4 of [1]. For completeness we give an independent proof in this case.

Let the triples $\{0,b_i,c_i\}$ (i = 1,2,...,m) constitute a solution to problem I, where $b_i < c_i$. Then

$$\sum_{i=1}^{2m} (d+i-1) \le \sum_{i=1}^{m} b_i + (c_i-b_i) = \sum_{i=1}^{m} c_i \le \sum_{i=1}^{m} (d+3m-i)$$

since all differences b_i,c_i,c_i-b_i have to be different.

Hence $m(2d+2m-1) \le \frac{1}{2}m(2d+5m-1)$ from which (i) follows.

Furthermore

$$\sum_{i=1}^{m} b_i + (c_i - b_i) + c_i = 2 \sum_{i=1}^{m} c_i = \sum_{i=1}^{3m} (d+i-1) = \frac{3}{2} m(2d+3m-1)$$

is even, so that $3m(2d+3m-1) \equiv 0 \pmod{4}$. This yields (ii). \square

1. RESULTS

THEOREM 1. For d = 1,2, or 3 the necessary conditions of proposition 1 are sufficient to guarantee the existence of a solution to problem II (and a fortiori to problem I).

PROOF. (i) d = 1.

In this case problem II reduces to Skolem's problem [7]: for what values of m is it possible to partition the integers $\{1,2,\ldots,2m\}$ into m pairs $\{a_i,b_i\}$ $(i=1,2\ldots,m)$ such that $b_i-a_i=i$?

But it is well known [4,7] that a solution of Skolem's problem exists iff $m \equiv 0$ or 1 (mod4), and thus case (i) is proved. \square

REMARK. Recall that a graceful numbering [3] (or β -valuation [6]) of a graph G with e edges is an assignment of a subset of the numbers $\{0,1,\ldots,e\}$ to the vertices of G in such a way that the values of the edges are all the numbers from 1 to e, where the value of an edge is defined as the absolute value of the difference between the numbers assigned to its endpoints.

Then in case d = 1 a solution to problem I is equivalent to a grace-ful numbering of the graph consisting of m triangles having exactly one vertex in common (this is an easy consequence of the remark in the introduction). The existence of a graceful numbering of such graphs was asked by C. HOEDE (who called these graphs "mills") at the 5th Hungarian Colloquium

in Keszthely 1976.

(ii) d = 2

In this case problem II is equivalent to Langford's problem [5]: for what values of m is it possible to find a sequence of length 2m consisting of 2 occurrences of i $(1 \le i \le m)$ such that for each i the two occurrences of i are separated by i other elements of the sequence?

EXAMPLE. For m = 3 (3,1,2,1,3,2) is a Langford sequence.

If the number i occurs at positions a_i and b_i in the sequence, then the pairs $\{a_i,b_i\}$ partition $\{1,2,\ldots,2m\}$ while $b_i^{-a}a_i=i+1$, i.e. we have a solution of problem II with d=2. Conversely any solution to problem II with d=2 yields a Langford sequence. But it has been proved by R.O. DAVIES [2] that a Langford sequence exists iff $m\equiv 0$ or 3 (mod4), and thus case (ii) is proved.

(iii) d = 3First let m = 4k, k > 1. A solution is given by the following eight groups of pairs $\{a_i, b_i\}$:

(AG1)	ai	$^{\mathrm{b}}$ i	b _i -a _i	
(1)	j	4k-j+3	4k+2-2j	j = 1,2,,k
(2)	k+j	3k-j+3	2k+3-2j	$j = 2, \ldots, k$
(3)	k+l	5k+2	4k+1	
(4)	2k+1	6k+3	4k+2	
(5)	2k+2	6k+1	4k-1	
(6)	4k+2	6k+2	2k	
(7)	4k+j+2	8k-j+1	4k-2j-1	j = 1,, k-1
(8)	5k+j+2	7k-j+2	2k-2j	j = 1,, k-2

Next let m = 4k+1. k > 1. A solution is given by:

(AG2)	a_{i}	bi	ba.	
(1)	j	4k-j+2	4k-2j+2	j = 1,2,,k
(2)	k+l	5k+3	4k+2	
(3)	k+1+j	3k-j+2	2k-2j+1	$j = 1, \ldots, k-1$
(4)	2k+1	6k+4	4k+3	
(5)	2k+2	6k+3	4k+1	
(6)	4k+2	6k+2	2k	
(7)	4k+2+j	8k-j+3	4k-2j+1	j = 1, 2,, k
(8)	5k+3+j	7k-j+3	2k-2j	j = 1,, k-2

Finally for m = 5 a solution is given by $\{1,8\}$, $\{4,10\}$, $\{2,7\}$, $\{5,9\}$, $\{3,6\}$.

<u>REMARK</u>. Another solution for the case m = 4k+1 is given in the next theorem. This completes the proof of theorem 1.

THEOREM 2. Let m \equiv 2d-1 (mod4), m \geq 2d-1, d \geq 2. Then a solution to problem II exists.

<u>PROOF.</u> We distinguish two cases, according to the parity of d. First let d be even, and let m = 4t+3.

From $d \ge 2$ and $m \ge 2d-1$ we get $\frac{1}{2}d-1 \ge 0$ and $t-\frac{1}{2}d+1 \ge 0$.

A solution is given by the following ten groups of pairs {p,q}:

(AEB	1) ^q i	(last value)	^p i	(last value)	q _i -p _i	(last value) ^{pa}	arity	of pairs
(1)	2t+d+2+j	$3t + \frac{1}{2}d + 2$	2t+1-j	t+½d+1	d+1+2j	2t+1	0	t-1/2d+1
(2)	3t+½d+3+j	4t+3	t+½d-1-j	d-1	2t+4+2j	4t-d+4	E	$t-\frac{1}{2}d+1$
(3)	4t+4+j	$4t + \frac{1}{2}d + 2$	d-2-j	$\frac{1}{2}d$	4t-d+6+2j	4t+2	E	$\frac{1}{2}d-1$
(4)	$4t + \frac{1}{2}d + 3$		$2t + \frac{1}{2}d + 1$		2t+2		E	1
(5)	4t+½d+4+j	4 t+d+ 2	½d-1-j	1	4t+5+2j	4t+d+1	0	$\frac{1}{2}d-1$
(6)	5t+½d+4		$t+\frac{1}{2}d$		4t+4		E	1
(7)	6t+ 6+j	6t+½d+5	2t+d+1-j	$2t + \frac{1}{2}d + 2$	4t-d+5+2j	4t+3	0	$\frac{1}{2}$ d
(8)	6t+½d+6+j	6t+d+4	2t+½d-j	2t+2	4t+6+2j	4t+d+2	E	$\frac{1}{2}d-1$
(9)	6t+d+5+j	7t+½d+5	6t+5-j	5t+½d+5	d+2j	2t	E	$t - \frac{1}{2}d + 1$
(10)	7t+½d+6+j	8t+6	5t+½d+3-j	4t+d+3	2t+3+2j	4t-d+3	0	$t-\frac{1}{2}d+1$
								4t+3

Here the variable j ranges from 0 up to and including n-1, where n is the number of pairs.

Next, let d be odd, and let m = 4t+1, d = e-1.

From $d \ge 3$ and $m \ge 2d-1$ we get $\frac{1}{2}e-2 \ge 0$ and $t-\frac{1}{2}e+1 \ge 0$.

A solution is given by the following ten groups of pairs $\{p_i,q_i\}$:

(AEB2) q _i	(last value)	^p i	(last value)	q _i -p _i	(last value)	parity	of pairs
(1)	2t+e+j	3t+½e	2 t-j	t+½e	e+2j	2t	E	t-1/2e+1
(2)	$3t + \frac{1}{2}e + 1 + j$	4t+1	t+½e-2-j	e-2	2t+3+2j	4t-e+3	0	$t - \frac{1}{2}e + 1$
(3)	4t+2+j	4t+½e	e-3-j	$\frac{1}{2}e^{-1}$	4t-e+5+2j	4t+1	0	<u>1</u> e−1
(4)	$4t + \frac{1}{2}e + 1$		2t+½e		2t+1		0	1
(5)	$4t + \frac{1}{2}e + 2 + j$	4t+e-1	½e-2-j	1	4t+4+2j	4t+e-2	E	$\frac{1}{2}e-2$
(6)	5t+½e+1		t+½e-1		4t+2		E	1
(7)	6t+3+j	6t+½e+1	2t+e-1-j	$2t + \frac{1}{2}e + 1$	4t-e+4+2j	4t	E	$\frac{1}{2}e-1$
(8)	6t+½e+2+j	6t+e	$2t + \frac{1}{2}e - 1 - j$	2t+1	4t+3+2j	4t+e-1	0	$\frac{1}{2}e-1$
(9)	6t+e+1+j	7t+½e+1	6 t+2-j	$5t + \frac{1}{2}e + 2$	e-1+2j	2t-1	0	$t-\frac{1}{2}e+1$
(10)	7t+½e+2+j	8t+2	5t+½e-j	4t+e	2t+2+2j	4t-e+2	E	$t-\frac{1}{2}e+1$
								4t+1

In case $m \equiv 0 \pmod{4}$ we have a solution for large d:

THEOREM 3. Let m = 4t, d = 2t-e (e \geq 0). Then if 2d \geq 3t+1 α solution to problem II exists.

<u>PROOF.</u> From $2d \ge 3t+1$ we get $t-2e-1 \ge 0$ so that the following seven groups of pairs provide a solution:

(AEB3	3) ^q i	(last value)	P _i	(last value)	q _i -p _i	(last value)	number of pairs
(1)	8t-j	7t+e+1	2t+e+1+j	3t	6t-e-1-2j	4t+e+1	t-e
(2)	7t+e-j	6t+e+1	3t+2e+2+j	4t+2e+1	4t-e-2-2j	2t-e	t
(3)	6t+e-2j	6t-e	2t-j	2t-e	4t+e-j	4t	e+1
(4)	6t+e-1-2j	6t-e+1	2t+e-j	2t+1	4t-1-j	4t-e	е
(5)	6t-e-1-j	5t+1	1+j	t-e-1	6t-e-2-2j	4t+e+2	t-e-1
(6)	5t-j	4t+2e+2	t+e+1+j	2t-e-1	4t-e-1-2j	2t+3e+3	t-2e-1
(7)	3t+2e+1-j	3t+1	t-e+j	t+e	2t+3e+1-2j	2t-e+1	2e+1
							4t

REMARK. This solution was found using certain linear programming techniques; I do not know whether it can be generalized to m = 0 (mod4) and arbitrary d (with m>2d). In any case the solutions depicted in tables (AEB1) and (AEB2) are much more elegant than the above one. Concerning the LP techniques and the theory of set-addition, these will be the subject of a future paper.

Solutions for small d can be obtained by pasting together other solutions:

PROPOSITION 2. Suppose we have solutions of problem II with $(m,d) = (1,d_0+a)$ and with $(m,d) = (a,d_0)$. Then a solution with $(m,d) = (1+a,d_0)$ exists.

<u>PROOF.</u> Let the first solution consist of the pairs $\{p_i,q_i\}$ (i = 1,...,1) and the second one of the pairs $\{a_i,b_i\}$ (i = 1,...,a). Then the collection of pairs $\{p_i+2a,q_i+2a\}$ (i = 1,...,1) together with $\{a_i,b_i\}$ (i = 1,...,a) forms a solution of problem II with $(m,d) = (1+a,d_0)$.

In particular we get:

THEOREM 4. Let $m \equiv 0 \pmod{4}$, $m \geq 4(2d-1)$. Then a solution to problem II exists.

<u>PROOF</u>. Take in the previous proposition $d_0 = d$, a = 2d-1, $1 \ge 2(d_0+a)-1$, 1 odd and apply theorems 1 and 2.

Now in order to complete the solution to problem II, we only have to construct a finite number of solutions for any fixed d.

E.g. for d = 4 we have left the cases m = 12,16,20 or 24, and it is easy to provide an explicit solution:

(i) d = 4, m = 12

Take the following pairs:

{5,9}, {19,24}, {4,10}, {6,13}, {15,23}, {12,21}, {8,18}, {11,22}, {2,14}, {7,20}, {3,17}, {1,16}.

(ii) d = 4, m = 16

Take the following pairs:

 $\{27,31\}$, $\{25,30\}$, $\{4,10\}$, $\{8,15\}$, $\{6,14\}$, $\{23,32\}$, $\{7,17\}$, $\{11,22\}$, $\{12,24\}$, $\{16,29\}$, $\{5,19\}$, $\{13,28\}$, $\{2,18\}$, $\{9,26\}$, $\{3,21\}$, $\{1,20\}$.

(iii) d = 4, m = 20

Take the following pairs:

{36,40}, {11,16}, {29,35}, {32,39}, {30,38}, {28,37}, {8,18}, {6,17}, {9,21}, {7,20}, {13,27}, {4,19}, {10,26}, {14,31}, {5,23}, {15,34}, {2,22}, {12,33}, {3,25}, {1,24}.

(iv) d = 4, m = 24

Take the following pairs:

{43,47}, {40,45}, {12,18}, {34,41}, {38,46}, {39,48}, {9,19}, {33,44}, {8,20}, {22,35}, {11,15}, {6,21}, {16,32}, {7,24}, {13,31}, {4,23}, {10,30}, {15,36}, {5,27}, {14,37}, {2,26}, {17,42}, {3,29}, {1,28}.

This proves:

THEOREM 5. For d = 4 the necessary conditions of proposition 1 are sufficient to guarantee the existence of a solution to problem II.

REFERENCES

- [1] BERMOND, J.C., A. KOTZIG & J. TURGEON, On a combinatorial problem of antennas in radioastronomy, Proc. 5th Hungarian Colloquium Keszthely 1976.
- [2] DAVIES, R.O., On Langford's problem (II), Math. Gaz. 43 (1959) 253-255.
- [3] GOLOMB, S.N., How to number a graph, in "Graph theory and computing" (ed. R.C. Read) Acad. Press, New York 1972, pp. 23-37.
- [4] HANANI, H., A note on Steiner triple systems, Math. Scand. 8 (1960) 154-156.
- [5] LANGFORD, C.D., Problem, Math. Gaz. 42 (1958) 228.
- [6] ROSA, A., On certain valuations of the vertices of a graph, in "Theory of Graphs" (ed. P. Rosenstiehl). Dunod Gordon Beach 1967, pp. 349-355.
- [7] SKOLEM, Th., On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957) 57-68.